SAULT COLLEGE OF APPLIED ARTS \& TECHNOLOGY SAULT STE MARIE, ON

COURSE OUTLINE

Course Title: Calculus

Code No-: Mth 551^{\wedge}
Semester: Three

Program: Mechanical/Electrical/Electronics/Computer

Author: The Mathematics Department

Date: January $1999 \quad$ Previous Outline Dated: August 1998

Approved

^ean
Date

Total Credits: 4
Prerequisite(s): MTH143

Length of Counse: 4 hrs./week Total Credit Hours: 64

Copyright © 1997 The Sault College of Applied Arts \& Technology Reproduction of this document by any means, in whole or in part, without the prior written permission of The Sault College of Applied Arts \& Technology is prohibited. For additional information, please contact Judith Morris, School of Liberal Studies, Creative Arts and Access, (705) 759-2554, Ext516

!. COURSE DESCRIPTION:

The basic concepts of calculus are introduced through an emphasis on applications and examples. Topics include limits, simple derivatives, derivatives of trigonometric and logarithmic functions, applications of derivatives, curve sketching, integration, and applications of integration.

STUDENT PERFORMANCE OBJECTIVES:

The basic objectives are that the student develop an understanding of the methods studied, demonstrate a knowledge of the facts presented and show an ability to use these in the solution of problems. To accomplish these objectives, exercises are assigned. Test questions will be of near equal difficulty to questions assigned in the exercises. The level of competency demanded is the level required to obtain an overall passing average on the tests. The material to be covered is listed below.

Topic 1:

1. Evaluate limits of algebraic functions.
2. Approximate the slope of a tangent to a curve.
3. Find the derivative of an algebraic function using the delta method.
4. Find instantaneous rates of change of a function using derivatives.
5. Find the derivative of a polynomial using a rule.
6. Find derivatives of other algebraic functions (products and quotients) using rules for differentiation.
7. Find the derivative of a power of a function - Chain rule.
8. Find the derivative of an implicit function.
9. Find higher derivatives of algebraic functions.

Topic 2:

1. Find slopes and equations of tangent and normal lines.
2. Compute velocities and accelerations for curvilinear motion.
3. Solve related rate problems.
4. Make graphs of non-linear functions using derivatives.
5. Make graphs of discontinuous functions using derivatives, asymptotes, intercepts.
6. Solve applied maximum-minimum problems.

II. STUDENT PERFORMANCE OBJECTIVES (Continued):

Topic 3:

1. Use differentials to compute small change in a function.
2. Find an antiderivative using derivative rules.
3. Use the basic mie for integration of algebraic functions.
4. Determine approximate areas under curves from graphs.
5. Determine exact areas under curves by integration - the fundamental theorem of integral calculus.
6. Evaluate other algebraic definite integrals.

Topic 4:

1. Solve problems involving distance-velocity-acceleration, cun-ent-voltagecharge using integration.
2. Find areas (between two curves) using horizontal and vertical elements and definite integrals.
3. Find the volume of a solid of revolution using the disk or shell method.

Topic 5;

1. Find derivatives of expressions containing sine or cosine functions.
2. Find derivatives of other trigonometric functions.
3. Find derivatives of inverse trigonometric functions.
4. Solve worded problems which involve trigonometric functions.
5. Find derivatives of logarithmic functions - and constant base.
6. Find derivatives of exponential functions - any constant base.
7. Solve worded problems involving logarithmic of exponential functions.
III. TOPICS TO BE COVERED:

1. The Derivative

2. Applications of the Derivative
3. Integration
4. Applications of Integration
5. Differentiation of Transcendental Functions

Approximate Time Frame

15 periods
15 periods
10 periods
10 periods
14 periods

IV. LEARNING ACTIVITIES:

TOPIC	TOPIC DESCRIPTION
NUMBER	
1.0	THE DERIVATIVE
1.1	Limits
1.2	The slope of a tangent to a curve
1.3	The derivative
1.4	Derivatives of polynomials
1.5	Derivatives of products and quotients of functions

REFERENCE CHAPTER ASSIGNMENTS

Chapter 23
Questions: 1-44
Page 617
Questions: 1-24
Page 621
Questions: 1-32
Page 625
Questions: 1-32
Page 634
Questions: 1-32
Page 638
Questions: 1-38
Page 644
Questions: 1-32
Page 648
Questions: 1-34
Page 651
Chapter 24
Questions: 1-24
Page 659
Questions: 1-24
Page 667
Questions: 1-24
Page 670
Questions: 1-28
Page 677
Questions: 1-30
Page 686
Questions: 1-20
Page 695
Chapter 25
Questions: 1-32
Page 698
Questions: 1-44
Page 703
Questions: 1-20
Page 708
Questions: 1-36
Page 711

IV. LEARNING ACTIVITIES (Continued):

TOPIC NUMBER	TOPIC DESCRIPTION	REFERENCE CHAPTER ASSIGNMENTS
4.0	APPLICATION OF INTEGRATION	Chapter 26
4.1	Applications of the indefinite integral	$\begin{aligned} & \text { Questions: 1-20 } \\ & \text { Page } 727 \end{aligned}$
4.2	Areas by integration	Questions: 1-28 Page 733
4.3	Volumes by integration	Questions: 1-32 Page 738
5.0	DIFFERENTIATION OF TRANSCENDENTAL FUNCTIONS	Chapter 27
5.1	Derivatives of sine and cosine functions	Questions: 1-50 Page 764
5.2	Derivatives of other trigonometric functions	Questions: 1-48 Page768
5.3	Derivatives of inverse trigonometric functions	Questions: 1-48 Page 772
5.4	Applications	Questions: 1-8, 11-16 Page 776
5.5	Derivatives of logarithmic functions	Questions: 1-48 Page 781
5.6	Derivatives of exponential functions	Questions: 1-52 Page 784
5.7	Applications	Questions: 1-32 Page 788

V. REQUIRED RESOURCES / TEXTS / MATERIALS:

1. Text: Washington, "Basic Technical Mathematics With Calculus", Sixth Edition, Metric Version. Benjamin/Cummings Pub. Co 1995.
2. Calculator: (Recommended) SHARP Scientific Calculator EL-531G. The use of some kinds of calculators may be restricted during tests.

V!. EVALUATION PROCESS/GRADING SYSTEM:

MAJOR ASSIGNMENTS AND TESTS

While regular tests will normally be scheduled and announced beforehand, there may be an unannounced test on current work at any time. Such tests, at the discretion of the instructor, may be used for up to 30% of the overall mark.

At the discretion of the instructor, there may be a mid-term exam and there may be a final exam, each of which can contribute up to 30% of the overall mark.

The instructor will provide you with a list of test dates. Tests may be scheduled out of regular class time.

ATTENDANCE

It is your responsibility to attend all classes during the semester. Research indicates there is a high correlation between attendance and student success.

If you are absent from class, it is your responsibility to find out what work was covered and assigned and to complete this work before the next class. Your absence indicates your acceptance of this responsibility.

Unexcused absence from a test may result in a mark of zero ("0"). Absence may be excused on compassionate grounds such as verified illness or bereavement. On retum from an excused absence, you should ask your instructor to schedule the writing of a make-up test. Failure to do so will be considered as an unexcused absence.

METHOD OF ASSESSMENT (GRADING METHOD)

A+ Consistently outstanding (90\%-100\%)
A Outstanding Achievement (80\% - 89\%)
B Consistently above average achievement (70\%-79\%)
C Satisfactory or acceptable achievement in all areas subject to assessment
(55\%-69\%)
X or R A temporary grade, limited to situations with extenuating circumstances, giving a student additional time to complete course requirements (See below)
R Repeat - The student has not achieved the objectives of the course, and the course must be repeated
CR Credit exemption

VI. EVALUATION PROCESS/GRADING SYSTEM (Continued):

The method of calculating your weighted average will be defined by your instructor. Since grades are based upon averages, it follows that good marks in some tests can compensate for a failing mark in another test.

Make-Up Test (if applicable)

An "X" grade may be assigned at the end of the regular semester if you have met ALL of the following criteria:

- an overall average between 45% and 54% was achieved
- at least 50% of the tests were passed
- at least 80% of the scheduled classes were attended
- all of the topic tests were written

If you are assigned an "X" grade, you may convert it to a "C" grade by writing a make-up test on topics agreed to by the instructor. This test will be available at the time agreed to by your instructor.

At the end of the regular term, it is your responsibility to obtain your results from your instructor and, in the event of an "X" grade, to inquire when the make-up test will be available.

The score you receive on this make-up test will replace your original test score and be used to re-calculate your weighted average. If the re-calculated average is 55% or greater, a "C" grade will be assigned. If the re-calculated average is 54% or less, an "R" grade will be assigned.

"R" and "X" Grades at the end of the Semester

If an " X " grade is not cleared by the specified date, it will become an " R " grade. Except for extenuating circumstances, an "X" grade in Math will not be carried into the next semester.

"R" Grades during the Semester

A student with a failing grade and poor attendance (less than 80% attendance) may be given an " R " at any time during the semester.

Calculus	MTH 551-4
Course Name	Code No.

VII. SPECIAL NOTES:

Students with special needs (e.g. physical limitations, visual impairments, hearing impairments, learning disabilities), are encouraged to discuss required accommodations with the professor and/or contact the Special Needs Office.

Advanced Standing

Students who have completed an equivalent post-secondary course must bring relevant documents to the Coordinator, Mathematics Department:

- a copy of course outline
- a copy of the transcript verifying successful completion of the equivalent course

Note: A copy of the transcript must be on file in the Registrar's Office.

VIM. PRIOR LEARNING ASSESSMENT:

Students who wish to apply for advanced credit In the course should consult the instructor or the Prior Learning Assessment Office (E2203).

